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FOREWORD

Nineteen hundred ninety-two, designated The International Space Year (ISY), coincided
with the 35th anniversary of the International Geophysical Year (IGY). The International
Space Year honored space exploration and the planet Earth and also marked the 500th
Anniversary of Christopher Columbus'’s discovery of the New World. Langley Research
Center, the home of the Long Duration Exposure Facility (LDEF), celebrated its 75th
anniversary. In addition, 1992 marked the second anniversary of the LDEF retrieval.
Since publication of the First LDEF Post-Retrieval Symposium Conference Publication in
January 1992, the LDEF principal investigators, co-investigators, and collaborating
investigators have had an additional 12 months to analyze and interpret the data from
LDEF's 57 onboard experiments and to reach a better understanding of the space
environment (ionizing radiation, meteoroids, space debris, and atomic oxygen in the upper
atmosphere) and the effects that prolonged exposure in this environment will have on
future spacecraft such as large low-Earth orbit (LEO) platforms, Earth-orbiting spacecraft,
and on future manned and unmanned spacecraft to the Moon and to other planets.

Results of the second year LDEF studies were presented at the Second LDEF Post-
Retrieval Symposium, held at the Town and Country Hotel, San Diego, California,

June 1to 5, 1992. This symposium was co-sponsored by NASA Langley Research Center
and the American Institute of Aeronautics and Astronautics. This document contains the
full-length papers presented at the second symposium. The collection includes invited
review papers on ionizing radiation, meteoroids and debris, environmental effects on
materials, environmental effects on systems, and archiving of the LDEF data. Contributed
papers on ionizing radiation, meteoroids and debris, space effects on materials and

systems, the LDEF mission and induced environments, microgravity, and life science are
also included. The document organization is very similar to that of the symposium.

LDEF Mission and Induced Environments
Space Environments - Ionizing Radiation
Space Environments - Meteoroid and Debris
Space Environments - Microgravity

Space Environmental Effects - Materials
Space Environmental Effects - Systems
Space Environmental Effects - Biology

The Future

During the symposium William H. Kinard chaired the first half of the general session
containing the invited review papers, and Bland A. Stein chaired the second half of the
general session containing the invited review papers, plus the Mission and Induced
Environments papers, and a Microgravity paper. Thomas Parnell chaired the Ionizing
Radiation sessions; J.A.M. McDonnell, Jean-Claude Mandeville, Dale R. Atkinson,
Michael Zolensky, and Donald Humes chaired Meteoroid and Debris sessions; Joan Funk
and John Davis chaired the Data basing session; Ann Whitaker and Bruce Banks chaired
the Coating session; Philip Young chaired the Polymer session, and R.C. Tennyson
chaired the Polymer Matrix Composites session. Roger Linton chaired the Metals and
Metal Matrix Composites session. Gale Harvey and Bland Stein chaired the Contamination
session. James Mason, Joel Edelman, and Harry Dursch chaired the Systems sessions.
William H. Kinard chaired the closing general session containing papers on biology and
future activities.
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I wish to thank the contributing authors whose research greatly enhanced the knowledge of
space environments and their effects on materials, systems, and biology. The papers
contained in this volume underwent a technical review by peer reviewers and an editorial
review. Ialso wish to thank the technical reviewers for their time and effort in making this
collection as current and accurate as it is. I would like to thank Maureen S gambelluri, who
assisted with the symposium logistics, and who cheerfully reformatted some of the papers
contained in this publication. I would like to gratefully acknowledge Susan Hurd, Mary
Edwards, Lisa Levine, Alisa Hollins, and Jeanne Gordon, for their support in editing this

document.

This conference publication is the second in a series of three LDEF Post-Retrieval
documents. In June 1991, over 400 LDEEF investigators and data users convened in
Kissimmee, Florida for the First LDEF Post-Retrieval Symposium. The results of the
symposium (130 papers) are printed in a three-part NASA Conference Publication,
LDEF-69 Months in Space: First LDEF Post-Retrieval Symposium,
January 1992, (NASA CP-3134.) The LDEF Science Office plans to hold a third
symposium in November 1993, in Williamsburg, Virginia. Published abstracts for the
third symposium will be available at the meeting. Additional information on these
symposia may be obtained by contacting:

Arlene S. Levine
LDEF Science Office M/S 404
NASA Langley Research Center
Hampton, Virginia 23681-0001
Telephone: 804 864-3318
Fax: 804 864-8094

The use of trade names or manufacturers in this publication does not constitute an official
endorsement of such products or manufacturers, either expressed or implied, by the
National Aeronautics and Space Administration.
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SUMMARY

The LDEF Meteoroid and Debris Special Investigation Group (hereafter M&D SIG) was
formed to maximize the data harvest from LDEF by permitting the characterization of the
meteoroid and space debris impact record of the entire satellite. Thus, our work is
complementary to that of the various M&D PIs, all of whom are members of the SIG. This
presentation will summarize recent results and discussions concerning five critical SIG goals: 1)
classification of impactors based upon composition of residues, 2) small impact (microimpact)
features, 3) impact cratering and penetration data to derive projectile sizes and masses, 4)
particulate flux estimates in low-Earth orbit, and 5) the LDEF Meteoroid and Debris database.

INTRODUCTION

A meeting of the Meteoroid and Debris Special Investigation Group (M&D SIG) was held
in March of 1992. We reviewed progress towards the M&D SIG goal of using the entire LDEF
satellite to define the meteoroid and space debris environment in low-Earth orbit. M&D SIG
members are at work on numerous projects, including use of 3-D impact feature images to
derive precise crater depth and diameter information, detailed examination of the impact record
of the LDEF frame (which provided common material exposed in all pointing directions),
examination of impact damage on aluminum panels, characterization of impactor residues, and
modelling of the Near-Earth particulate environment using M&D SIG data. All of these
activities are reported separately in this conference proceedings document.

PREGEDING PAGE BLANK NOT FILMED
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One determination of the recent M&D SIG meeting was that consensus should be met by
the membership on five key activities; these are (a) establishment of standard criteria for
distinguishing natural from man-made impactors, (b) characterization of same for very small
impact features (<10 um diameter), (c) use of laboratory simulations for calibration of impactor

properties from observed impact features, (d) use of LDEF results to calculate particulate flux in

low-Earth orbit, and (e) use of a standardized database for M&D results. This report is a first
attempt to address these critical issues in a forum accessible to other LDEF investigators and the
community at large, both for information purposes and also to invite critique from the larger
community. Consensus on these issues has not always been achieved, as will become obvious.
However, we are able to delineate the scope of disagreements and suggest ways of resolving
them. For example, we recognize that much future work will necessarily concern calibration of
craters in aluminum (the most common material on the LDEF), and cratering and penetration
processes in the Teflon thermal blankets.

As the reader has now discovered, this paper is not a global overview of M&D SIG

activities, but is narrowly focussed. We discuss each critical issue below, in the order in which
presented above.

CRITERIA FOR DISTINGUISHING NATURAL FROM MAN-MADE IMPACTORS
Introduction

Since different capture experiments on LDEF employed different collection schemes and
different analysis techniques, it has proved difficult to establish universal criteria for
distinguishing between natural and man-made impactors. The situation becomes more complex
for the entire LDEF with its myriad of experimental surfaces and analytical investigations.
However, in the interest of promoting the comparisons of results from many laboratories, we

propose the following classification scheme. This scheme has been employed for some LDEF
studies already (ref. 1). _ o

Contamination

~ Clearly, the Ievel and composition of contamination must be carefully established before
analysis of residues should be attempted. Also, supposedly well-understood LDEF materials
often contain impurities which, though minute on a gross scale, are important at the scale
necessary for analysis of impactor residues. LDEF surfaces are sprinkled with particles of
alkali-halide salts (from oceanic spray and human waste), paint flakes containing high
concentrations of Ti and/or Zn and/or Mg (from LDEF paints that were shed due to the action of

atomic oxygen and ultraviolet radiation, flakes of Al from blankets and antenna arrays, and other
less characterized materials. : - , -

Bééiﬁs?g)fublqultbus Si contamination on LDEF (from dutgassing RTV?) particular care
must be employed in use of this element for establishing criteria. This is particularly unfortunate

since Si is an important element in meteoroids. Other elements found within this particular
contaminating material include O, C, H, Na,Kand Ca. -
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Criteria For Natural Impactors

Any of these constitute sufficient conditions:

A Chemical Criteria

(1) Mainly Fe with minor S and/or Ni

(2) Various proportions of Mg, Fe and Ca + minor S, Ni, and/or Al

(3) Fe+Cr only if O is also present in same residue grains and outgassed RTV contamination
is not locally evident

(4) Non-terrestrial isotopic compositions

(5) Presence of solar wind implanted He or Ne

(6) Given that impact residues are frequently fractionated, comparisons between ratios of
refractory to volatile elements can also be employed to establish criteria for origin.
Useful ratios are Al/Mg, Ca/Mg and Ti/Mg (see ref. 2 for application of these ratios).

B Physical Criteria
(1) Presence of solar flare tracks

C Mineralogical Criteria
(1) Contains olivine, pyroxenes, ferromagnesian phyllosilicates (serpentines, smectites)
and/or Fe-Ni sulfides

Criteria For Man-made Impactors

Not any of the above criteria; also:

D General Criteria
(1) Mainly Al or Al,O3 + minor Fe, Ni, Cr, Cl, Naor C
(2) Mainly Fe with accessory Cd, Ti, V, Cr, Ni, Mn, Co, Cu or Zn with the latter elements
present in abundances greater than to be expected for common minerals. A common
man-made material is stainless steel consisting of Fe, Cr and Ni.
(3) Various proportions of Ca, Al, Si, Ti, K, Zn, Co, Sn, Pb, Cu, S, Cl, Au or Ag.

Surface Specific Criteria

Au- No change

Ge- No change

Al- Expect Al contamination to affect criteria Al, A2 and D2. Criteria D1 will not apply

Steel- Expect Fe and Cr contamination to affect criteria A1 and A2. Be careful when
applying criteria A3 or D2,

MICROIMPACT FEATURES

A subcommittee of the M&D SIG has summarized all data gathered on micro-craters or
perforations (features nominally <10 pm in diameter) found on LDEF surfaces. The goal is to
issue a final summary report that will include all reported impact flux data in several formats in
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order to allow maximum utilization by the various communities. The M&D SIG practice of
reporting all primary data along with any interpretive data will be followed. The final report
will also include summaries of information reported in the literature or directly to the M&D SIG
concerning micro-impactor chemical compositions and developments and new insights into the
theoretical and semi-empirical prediction of micro particle fluxes and velocity distributions in
low-Earth orbit (LEO).

This interim report lists the LDEF cumulative micro particle crater/penetration fluxes
reported to date in the literature (refs. 3-9, ft notes 1-4)* or directly to this committee (ref. 10, ft
notes 5-6). Table 1 lists the flux data (number/m?2/s) along with LDEF experiment numbers and
bay locations, the time periods of exposure, the types and amounts of surface materials scanned,
the scanning methods, the minimum detectable crater diameters (>90% confidence) as reported
by the individual investigators, and the number of impact features counted. Data is grouped by
LDEF locations and exposure times and listed in order of increasing minimum feature size. The
sources for the tabulated data are listed at the end of the table. Data for micro-craters and
penetration holes in Teflon thermal blankets are not included at this time, but will be added
along with other data for the next interim report. These blankets are a valuable source of impact
data, but the size of micro craters that can be observed will be limited by the surface texture of
the Teflon blankets, which is highly variable and results from atomic oxygen and ultraviolet
radiation damage.

The LDEF community is encouraged to contribute new information on small impact
features. Several of the investigators who supplied information for this report have undertaken
the difficult task of converting data from difterent LDEF surfaces (metals, foils, ceramics) into a
common format. Most notably, Horz et al. (ref. 3), Mandeville et al. (ref. 4, ft note 1) and
especially McDonnell, et al. (refs. 5-7) have discussed and applied conversion formulae
extensively. Interested readers are referred to these sources for more information. Further
refinement in these procedures can be expected as more data is collected and correlated. The
committee's final report will contain the latest versions of these investigators' formulae.

There are numerous empirical and semi-empirical relationships developed to convert impact
crater and penetration hole morphology in metals, crystalline materials and thin films (metal and
polymeric) to particle mass or size, or equivalent crater size in aluminum, or equivalent
penetration thickness for aluminum film. All such methods are dependent on general
assumptions about impactor density and velocity and interaction with the target. Velocity and
density assumptions can be applied unilaterally to all features on a given LDEF side and provide
an acceptable level of comparison for a statistically large sample set. Average velocities for
micro-particles striking the various sides of LDEF can be calculated from reported flux data with
modest accuracy. In addition, as data on impactor chemical composition is reported, greater
insight into the range and average densities of micro impactors can be gained.

The portions of conversion formulas that involve terms dependent on the physical properties
of the target materials as they relate to interaction with hypervelocity micro-impactors can be
accurately determined in many cases by empirical evaluation. Van de Graaff accelerators are
useful for determining material response to hypervelocity micro-particle impacts. While there is
some test data on Fe and Al metals and foils, much more data is needed for these as well as for
micro-particle impacts into crystalline materials such as Si and Ge. However, a thorough review
of the literature concerning micro-particle hypervelocity impacts into these materials may
provide enough data to determine the cratering characteristics of these events under orbital
conditions. )

* See footnote section that follows the reference list.
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Data from penetrations and cratering in aluminum foils on LDEF can provide the means for
calibration of the crater size relationship between Al and other materials. This data can also be
used to calibrate the sensitivity of the Interplanetary Dust Experiment (IDE) sensors (A0201).
Crater-size distributions in these materials can also be compared. Additional information is
highly desirable on micro-crater densities and size distributions on other materials on LDEF,
especially optically-smooth surfaces.

Several important observations are immediately evident from the data in Table 1. Singer,
Mulholland and co-workers (refs. 8-9, ft note 4), have reported a short-term increase in micro-
particle debris impacts on LDEF followmg deployment and attributed the source to Shuttle
activities. Electronic data from the A0201 high-sensitivity sensors located on the Earth, Space
and West (anti-ram) sides of the satellite showed a greatly increased flux of micro-particle
impacts during the first 8 days following deployment. The impact fluxes on the low sensitivity
A0201 sensors on these same locations were the same or less than their respective first year
fluxes, indicating that the vast majority of the particles must be submicron. The impact fluxes
(for the initial 8 days) on both types of A0201 sensors mounted on the east (ram) side of LDEF
were approximately double their first year fluxes. Further examination of this data combined
with refined IDE sensor sensitivity relations derived from orbital data and from archived ground
test data should define a narrower size range for these debris particles.

There is fairly good agreement of the density of small crater densities for all surfaces on a
particular side of LDEF that were exposed for the entire 5.77 year mission. Comparison of Al
foil and plate data from the West and North sides of LDEF (trays C03 and D-12, respectively)
with the IDE (Exp. A0201) sensor data from the same locations (ref. 10) indicates that the 1.0
pm metal-oxide-semiconductor (MOS) sensors were triggered by particles that would leave an
~3 pum diameter crater in Al. This is based on the determination of McDonnell, et al. (ref. 6),
that the marginal perforatlon limit, f, for the A0023 thin foils was given by:

£ = (0.59)(1.15)D, = 0.68D,

" where D, is the crater diameter at the foil surface. While no 5.77 year flux data is available for
the IDE 6 4 um MOS sensors (due to power loss), a first order estimate of the sensitivity factor
can be derived from the ratio of the insulator thickness:

(0.4/1.0) x 3 um = 1.2 pm equivalent Al crater size

There is much to be said (and much that has been said) about the reported flux distributions
listed in Table 1. These tasks are approprlately left to the community and a summary of their
efforts will appear in the committee's final report. However, a. question of long term micro-
particle impact flux variation on the West side of LDEF by factor of 2 is raised by the temporal
data reported to this committee by Mulholland, et al. (ref. 9, ft note 4), and Mandeville (ft note
6). According to these investigators, a higher partlculate flux rate occurred during the first year
of LDEF's orbit compared to the 5.77 year average flux. Mulholland also reported first year
fluxes on LDEF's space-facing and North (row 12) sides that were about twice as great as the
5.77 year average fluxes for these locations (ref. 10). The East (ram) sensors showed no
significant variation in the first year and 5.77 year impact fluxes. South (row 6) side sensors
have not been evaluated yet. Earth-facing panel IDE sensors showed a 5.77 year flux rate that
was twice as high as the rate during the first year, and no large particle impacts were noted on
these sensors. These are interesting results that may eventually be correlated with orbital or
naturaI events by the community.

Because of the reported long term temporal variations in micro- partxcle impact fluxes, it is
imperative to correlate all other temporal impact data available from surfaces that were only
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exposed during the first year of LDEF's orbit. Data from optically smooth surfaces are preferred
to other surfaces because of a reduced crater-size detection threshold.

Another question of interest to this committee is: what are the smallest size primary impacts
observed on LDEF? Walker and Swan (ft note 5) have reported results from high magnification
(1000X) SEM scans of their optically-smooth Ge capture cells located on row 8 (Table 1). In
general, all craters on row 8 Ge wafers had associated spall zones. The exposure time for these
surfaces is given as ~5.5 years because they were initially covered with 2 um thick metallized
Mylar films that apparently failed during the first few months of orbit. The smallest craters
found by the researchers were ~0.1 um in diameter. In most cases the surface texture of metal
samples precludes identification of such small features.

Tn summary, this interim report of the M&D SIG Micro Crater Committee has

(1) listed the micro-particle cumulative flux data reported to date,

(2) noted general consistency among the 5.77 year flux rates reported from different
surfaces,

(3) identified long term temporal variations in the reported "average" flux rates,

(4) listed the cumulative flux data for the smallest features identified on LDEF (0.1 pm
craters in Ge) to date.

The following tasks are required to develop a comprehensive data base on micro-particle
impacts on LDEF:

(1) More ground test data are needed on hypervelocity (10-20 km/s) micro-particle impacts
into crystalline materials such as Si and Ge. A thorough review of the literature
should define the needs for additional test data.

(2) Additional information is highly desirable on micro-crater densities and size
distributions on other materials on LDEF, especially optically-smooth surfaces.

(3) It is imperative to correlate all other temporal impact data available from surfaces that
were only exposed during the first year of LDEF's orbit.

(4) Chemical analysis information on particle sources should be collected.

Although the fourth point listed has not been discussed in detail in this interim report, a
significant data base on micro-particle residue analyses is under development (see refs. 2 & 11,
ft note 1). Several hundred impact sites have been analyzed by various investigators, and
significant new data was presented at the Second LDEF Post-Retrieval Conference in June 1992.

CONVERSION OF IMPACT FEATURE DIMENSIONS INTO PROJECTILE PROPERTIES:
, K CALIBRATION OF LDEF FEATURES

Introduction

An important goal of the M&D SIG is to reconstruct the initial impact conditions for
individual impact craters and penetration holes, as well as the average conditions characterizing
any given population of impact features. Of specific interest is the derivation of projectile
properties, such as size, mass, and kinetic energy, and their relative and absolute frequencies
typical for a given population of impact features, and ultimately for the entire LDEF. These
frequencies constitute first order information for the reconstruction of possible sources and
source mechanisms for both natural and man-made particles. They also form the basis for any
predictive capabilities regarding collisional hazards to operations in LEOQ. As a consequence, the
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dimensional analysis of impact features and the conversion of these dimensions into projectile
properties constitutes a high priority activity of the M&D SIG.

Such efforts are frequently also referred to as "calibrations” because they utilize craters and
penetration holes produced under known laboratory conditions. The latter reveal significant
dependency on impact velocity, angle of incidence and diverse physical properties of both the
target and projectile materials, such as density, compressive strengths, porosity, and material-
yield criteria under high dynamic compressive and tensile stresses. As a consequence, results
obtained under a specific set of laboratory conditions are not readily applied to another set of
conditions. Substantial efforts by many workers, both experimentalists and theoreticians, are
underway to understand the effects of absolute projectile size (dimensional scaling), velocity
(velocity scaling) and material properties (strength scaling) that control the size of an impact
feature, including combined parameters such as kinetic energy (energy scaling). Proper
interpretation of LDEF impact features depends on the correct scaling of all parameters, yet
improved dimensional scaling and velocity scaling rank foremost in the goals of LDEF workers,
because the current experimental data base suffers from a paucity of information at appropriate
projectile sizes (1-1000 pm) and velocities (>10 km/s).

This report reviews some of the existing experimental data and their generalizations to
permit interpretation of LDEF craters and penetration holes. It does not intend to provide a
complete overview of the extensive impact literature. We will also demonstrate that computer
based impact simulations have evolved into powerful tools to permit extrapolation of laboratory
results to conditions beyond those actually simulated.

Experimental Calibration

All calibration activities begin with well-controlled experiments, combined with
standardized measurement techniques. For example, when measuring the diameters of craters or
perforation-holes several different diameter measurements can be made. The diameters can be
measured at the original surface of the impacted material (this is the preferred measurement), or
they can be measured at the center of the crater/perforation lip, or they can be measured at the
outer lip edges. These diameters can differ by factors of two to four from each other for the
smallest craters. If the type of measurement is well-documented, and if the impactor and target
materials are well-characterized and the impact characteristics (i.e. velocity, angle of incidence)
are known, it may be possible to convert these measurements to equivalent diameters at the
original surface of the impacted materials. For calibration, the better characterized the
laboratory conditions, the more useful the data. The impactor and target materials should have
well-known physical properties, including knowledge of how these properties vary with the
extreme temperatures and pressures characteristic of hypervelocity impacts. If the impact data
will be used to calibrate or benchmark a hydrodynamics computer code, the materials' equations
of state must also be well known. For these reasons, initial calibration experiments typically use
such materials as aluminum, stainless steel, or lexan. In addition, initial calibration experiments
often use the same material (e.g. aluminum) for both target and impactor.

Several experimental techniques are available for performing calibration tests. All of these
techniques have positive and negative features, and there is not currently one which directly
simulates all aspects of the meteoroid and debris impact environments. For determining material
properties and equations of state, flat-plate impact experiments at the velocities of interest are- -
the best technique. The capability to get the appropriate velocities with the correct types of
materials is the primary issue in calibration testing. Various types of accelerators (e.g. Van de
Graaff electrostatic accelerators, plasma-drag accelerators or light-gas guns) can achieve
different velocity regimes, but with a limited range of particle sizes, shapes and materials. For
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example, two-stage, light-gas guns are available which can launch almost any material larger
than ~50 pm, of many different shapes, to velocities typically <8 km/s. On the other hand, Van
de Graaff accelerators can launch particles at velocities exceeding 20 km/s, yet only for
submicron-sized, surface-conducting and highly-charged projectiles. This is why these
particular experiments typically employ iron particle projectiles, and why experiments with
silicates and other interplanetary dust analogues are lacking. These limited launch capabilities
have led to a paucity of data on various materials and impact conditions which are nonetheless
critical to LDEF data analysis.

Analytical Calibration

Calibration is completed when analytical models have been checked to ensure they correctly
reproduce impact phenomenology and once they include predictive capabilities of impact effects
and damage. Analytical models can be in the form of either semi-empirical equations for first-
order analysis or hydrodynamic computer codes for more precise analysis and a better
understanding of the physical processes involved.

Semi-Empirical Equations

Semi-empirical equations can be curve-fits to limited experimental laboratory data sets or
can be derivations from physical equations, but with empirical constants or exponents. Both
approaches are highly dependent on the size and quality of the data set. In addition, the second
type of equation is highly dependent on the assumptions which were used to perform the
derivations. The derived equations can be much more accurate than pure curve fits, but can
suffer due to the assumptions. For example, it is common practice to include only target
material properties in these equations. This is a poor practice, because material properties of the
impactor are just as important.

Many semi-empirical equations have been proposed. However, the equations which have
been most widely used in analyzing space exposed surfaces include; Pailer and Grun (ref. 12)
and Carey et al. (ref. 13) for marginal perforations; Cour-Palais (14) for cratering in metals,
specifically in aluminum targets; and Gault (ref. 15) and Mandeville (ref. 16) for brittle glass or
ceramics. With the increased data from the last several years, the semi-empirical equations have
been improved somewhat, yet there is still no overwhelming concensus regarding improved
utility ;o cases beyond those simulated in the laboratory, as discussed by Humes (ref. 17), for
example.

Currently, the recommended equations are as follows. For marginal perforations of Al we use
the McDonnell and Sullivan (M&S) equation (ref. 7):

fax/dp = 1-023dP1'OSG(PP/PT)OA%(G A]/GT)0~134VPO~664
where fi,,, is the equivalent thickness of foil for the ballistic limit, d is diameter (measured in
cm), T stands for the target, P for the particle, p is density, © is strength, and V is impact
velocity (in km/sec). For craters in aluminum use the formula of Cour-Palais (ref. 14) as
updated by Humes (ref. 17):

P = 0.42m0.352 pP1/6v2/3(cosg)2/3

where P is crater depth measured down from the ambient surface, m is particle mass, and 6 is the
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impact angle. For craters in brittle materials use the equation of Mandeville (ref. 16):
log D, =0.48 + 0.36 log m

where D, is crater diameter.

The biggest shortcoming of most of these equations is the limited data set used for
derivation. Also, in many cases we are not yet smart enough to properly synthesize the data, and
the processes are extremely complex, defying treatment via a few simple terms. '

New efforts underway by LDEF PIs and SIG members will attempt to combine data sets
and revise equations for marginal perforation and cratering based on the increased quantity of
data. Of particular interest in their work is the transition from cratering to penetration, such that
small craters and relatively large penetration holes from a single experiment surface may be
converted to internally consistent distributions of projectile sizes; this is not currently the case, as
described by Warren et al (ref. 18) for Solar Max and by Humes (ref. 17) for LDEF surfaces. 1
addition, McDonnell, Mandeville, Watts and Atkinson are continuing their individual L
developments of the current marginal perforation, cratering, and brittle cracking equations.
Horz et al. (ft note 8) suggest that the marginal penetration limits can possibly be replaced by -
unique solutions for projectile size from the measurement of hole diameter and foil thickness (at
unit velocity). Much more experimental data is still needed, particularly for the brittle cracking
of ceramics and the behavior of composites in order to define good semi-empirical equations for
major classes of materials employed in spacecraft. =~ -~ =7 i e T e ]

HydrodynamlcsCodes

Hydrodynamics codes are based on physical principles. These computer codes require
long run times and large computer memories, and are typically used on computer workstations
or supercomputers. These codes are very useful for predicting specific cases, or for looking at™~
how impact phenomena vary with changes in material properties. However, their long run times
(which lead to high costs) make them of little use for first-order predictions.

These codes are very dependent on the degree of characterization of the materials' =
equations of state, properties, property variations with temperature and pressure, and pre-impact

states. If these are not known, then specific impact cases cannot be predicted. In additich; % ===
because of material variations, the codes require benchmarking against actual experiments, This
benchmarking consists of making predictions, comparing the predictions against actual
experimental data, and "tweaking" material properties within the acceptable physical ranges to

consistently match the data.

Many hydrodynamics codes are currently in existence. In the past, HULL and CSQ were -
widely used for impact predictions. Currently, the best codes for impact predictions are the CTH
code from Sandia National Laboratory and the MESA code from Los Alamos National
Laboratory. All of these codes are undergoing continual improvements. In addition, a new
Smoothed Particle Hydrodynamics (SPH) code is in development at the Phillips Laboratory in
Albuquerque, NM.

The biggest drawbacks in using hydrodynamics codes are the lack of equation of state
data for many of the materials of interest, and the codes’ problems in modeling ceramics and
composites. The latter problems will be slowly reduced with future codes and further code
improvements. However, the lack of equation of state data can only be fixed by collecting

additional data.
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Example Of An LDEF-Related Calibration

The following is an example of a calibration performed for interpretation of LDEF
cratering data and for selecting the "best" marginal perforation equation. First, the CTH code
has been benchmarked against experimental data. Then the CTH code has been used to predict
marginal perforations in typical satellite materials. These predictions have then been compared
against predictions made using the Pailer and Grun or the McDonnell and Sullivan equations.
We present here results of a preliminary study, which concentrates on the issue of marginal
perforations (penetrations). The emphasis on aluminum for both impactors and targets is based
upon the wide availability of data for this metal. Fortunately, both the frame of LDEF and most
space debris are composed of aluminum. Because symmetric modelling avoids the issue of
material strengths and densities this aspect was not well studied, except in the context of
matching Horz's data.

A series of calculations have been made using the CTH code to investigate the
penetration of typical satellite walls with typical space debris, which were then compared to
LDEF observations. For these calculations the walls were assumed to be Al 6061-T6 alloy. For
the CTH calculations, the impactors were spherical aluminum bodies, and both impact speed and
size were varied to determined a matrix of penetration conditions. The matrix was bounded with
the upper impact speed of about 20 km/s for debris (head-on collisions), and with a maximum
particle size of 0.5 cm (the largest crater observed on LDEF about 0.5 cm diameter). Table 2
lists the results of these preliminary runs.

The first task with the CTH code was to perform some type of validation between
experimental results and reproducible computer simulations. The data and results from a series
of gas gun experiments was provided by Fred Horz (NASA JSC) (Table 3; also ft note 8).

The data provided by Horz contained many combinations of materials that were used for
the impactor and the projectile. In order to get reasonably accurate results with the CTH code
the materials chosen had to have material properties that were readily available and well
characterized. Complex compound materials were ruled out, leading to a choice of an aluminum
target and an impactor made of soda-lime glass.

Several models were available in CTH code to permit thermodynamic formulation of an
equation of state; however, the one chosen was the Mie-Gruneisen. We caution that this is
largely a thermodynamic parameter, related to shock isentropes, that may have little to do with
affecting the material flow. The CTH code has an enormous number of options for both
equations of state and constitutive relations. These calculations concentrated on simple elastic-
plastic models and simple fracture (spall) models. The plastic compressive yield strengths were
varied for both the soda lime impactors and the aluminum targets. The spall strengths were
similarly varied. Yield and spall strength data were obtained from the literature and soda-lime
manufacturers; for aluminum the data were based solely upon "best fit", since aluminum can
have grossly varying properties depending upon composition and tempering history. By
inspection of the literature we found that the closest fit for the aluminum targets of Horz was Al
1100 alloy with a temper of H16. The final best fit data and information entered into the code
were the following:

Aluminum; ]
yield = 1.3 kbars, spall = 1.6 kbars; density = 2.70g/cm?3;
sound s3peed =5.31 x 105 co/sec; Gruneisen = 2.25; heat capacity = 1.04 x 1011
erg/cm>/eV; constant in linear Hugoniot = 1.34
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Soda-lime Glass (Horz Experiments):
yield = 10 kbars, spall = 1.2 kbars; density = 2.20g/cm3;
sound speed = 5.91 x 105 cm/sec; Gruneisen = 0.40; heat capacity = 8.744 x 1010
erg/cm>/eV; constant in linear Hugoniot = 1.50

TABLE 2 Results of preliminary runs

Plate Thick- Proj. Diam. Proj. Veloc. Penetration Comments
ness (mm) (mm) (km/s)

2.5 5.0 1.3 Yes Spall
2.5 1.0 4.4 Yes Spall
2.5 1.0 43 No Spall
2.5 0.75 8.0 Yes Spall
2.5 0.75 7.5 No Spall Layers
2.5 0.50 17.0 Yes Clean Hole
2.5 0.5 16.0 No Spall Layers
2.0 1.0 3.5 Yes Spall
2.0 1.0 3.0 No Crater
2.0 0.75 53 Yes Spall
2.0 0.75 5.0 No Spall Layers
2.0 0.50 11.3 Yes Spall
2.0 0.50 11.0 No Spall Layers
2.0 0.25 20.0 No Vapor Prob
1.5 1.0 22 Yes Spall
1.5 1.0 2.0 No Crater
1.5 0.75 32 Yes Spall
1.5 0.75 3.0 No Spall layers
1.5 0.50 7.0 Yes Spall :
1.5 0.50 6.5 No Crater ’

TABLE 3: Data from F. Horz on Soda-Lime Glass Impact Experiments

Aluminum
Shot Number Projectile Thickness Velocity Hole Diam. Hole Diam.
Diameter (mm) {mm) (km/s) (mm) Test (mm) CT

786 3.175 9.02 5.8 3.62 10 -
787 3.175 8.64 5.81 7.31 12.5
788 3.175 7.62 5.79 10.19 12.5

789 3.175 1.6 5.87 8.76 10

791 3.175 10.94 5.84 13.73* 11.00*

785 3.175 9.525 5.91 224 9.8

*Crater diameter, not a penetration
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Data/Model Fit

Workers at POD, Assoc., have tried to fit the penetration data with analytic equations.
The CTH data is approximately fitted by the function:

VP =k dpa TB

where k is a constant, Vp is the projectile velocity, dp is the projectile diameter an